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Fibonacci Sequence

1,1,2,3,5,8,13,...
Let an denote the n−th term for
n = 1,2,3, ....
(You can think of an as a
function f : N→ C).
a1 = 1,a2 = 1,an =
an−1 + an−2 for n ≥ 3.
Actually an = 1√

5
(αn − βn)

where
α = (1+

√
5)/2, β = (1−

√
5)/2.
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Geometric Sequence

Problem 11.1.14: Find a formula for an of the following

sequence {4,−1,
1
4
,− 1

16
,

1
64
, ...}

Answer: This is a geometric sequence.
Each term is multiplied by same number,
called common ratio and denoted r .
To get to n−th term you need to multiply n − 1 times.
Here r = −1/4 and an = 4rn−1.

Geometric sequences are the discrete analogs of the
exponential function. (and vice versa).
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Example 1 – Geometric sequence

Find a formula for the n-th term:

3
5
,
2
3
,
20
27
,
200
243

, ....
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Answer for Example 1

Answer: Common ratio is r = 10/9. First term is 3/5.

To get to n−th term you need to multiply n − 1 times.

Here r = −1/4 and

an =
3
5

rn−1.

Check by plugging in!
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Arithmetic Sequence

Problem 11.1.14: Find a formula for an of the following
sequence

{5,8,11,14,17, ...}

This is an arithmetic sequence.
Each term is increased (or decreased) by same number, called
common difference and denoted by d .
To get to n−th term you need to add n − 1 times.
Here d = 3 and an = 5 + 3(n − 1) = 3n + 2.

This is also same as formula for linear function. Linear function
increases by the value of the slope each time x is increased by
1.
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Example 2 – Arithmetic Sequence

1,0,−1,−2,−3, ...

Write a formula for the n-th term.

The common difference is −1.

To get to n−th term you need to add n − 1 times.

Here d = −1 and an = 1 + (−1)(n − 1) = 2− n.
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Oscillating Sequence

Problem 11.1.14: Find a formula for an of the following
sequence

{1,0,−1,0,1,0,−1,0, ...}

This in example of an oscillating sequence.
In fact you might recognize it as the values of the sine function
at

π

2
,
2π
2
,
3π
2
,
4π
2
, ...

an = sin
π

2
n.

You can also use the cosine function or do it using powers of
−1.
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Example for squeeze theorem

Sequences : part of a function. Graph of bn = 1 + (sin(n)/n) at
1,2,3...,99,100 :

Each vertical line represents a
value of the sequence.
The values of bn are squeezed
between an = 1 + (1/n) and
cn = 1− (1/n).
By squeeze theorem (see
below), since an → 1,bn → 1,
and −1 ≤ sin(n) ≤ 1 =⇒ an ≤
bn ≤ cn, we get bn → 1.

1+(1/n)

1-(1/n)

20 40 60 80 100

0.6

0.7

0.8

0.9

1.0

1+(sin(n)/n)
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Limit of a sequence – definition

Finding limits of sequences is similar to finding limits of
functions.

lim
n→∞

an = L if ∀ε ∃ N for which |an − L| < ε ∀ n ≥ N

If L exists the sequence is said to be convergent.

FACT: If the function f (x)→ L as x →∞ then f (n)→ L also, as
n→∞

Proof: exercise
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Limit of a sequence : Squeeze theorem

SQUEEZE THEOREM FOR SEQUENCES

If an ≤ bn ≤ cn for n ≥ N and an → L, cn → L, then bn → L also.

Proof: an → L, cn → L means for any ε > 0, |an − L| < ε for
n ≥ N1 for some N1 and |cn − L| < ε for n ≥ N2 for some N2.
Choosing N to be the bigger of N1,N2, we have:

L− ε < an < L + ε,L− ε < cn < L + ε,∀n ≥ N.

=⇒ L− ε < an, cn < L + ε,∀n ≥ N.

But an ≤ bn ≤ cn means L− ε < an ≤ bn ≤ cn < L + ε,∀n ≥ N.
Thus L− ε < bn < L + ε, ∀n ≥ N for any ε > 0 and limit as
n→∞ of bn is also L.
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Limit of a sequence – boundedness

CONVERGENCE OF BOUNDED, MONOTONIC SEQUENCES

BOUNDED: terms of sequence are always above or below a
certain value. Either an ≤ M or an > m for all n.
MONOTONIC: Either increasing or decreasing.
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Exercise 1

Write down a formula for the n−th term (an) of the sequence
and find its limit, if it exists:

1
2
,
2
3
,
3
4
,
4
5
, ....

Is it bounded? If so what is the bound?
Is it monotonic?
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Exercise 1 – bounded

It is bounded because an < 1 for all n.

We know this because the denominators are always bigger
than the numerators.

In fact 1 is the smallest upper bound. Anything bigger than 1 is
also an upper bound. We will see in next slide that 1 is the limit.
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Exercise 1 – monotonic

It is also monotonic increasing, i.e, always increasing.
Each term is smaller than the next.
an = n/(n + 1). Putting n + 1 instead of n we get the next term
an+1 = (n + 1)/(n + 2).

an < an+1 because n/(n + 1) < (n + 1)/(n + 2).
To prove this cross multiply and check that n(n + 2) < (n + 1)2.
Note: This can be done because all terms are positive.
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Exercise 1 – using squeeze theorem

The squeeze (sandwich) theorem is really redundant here
but you can still use it in the following way:

1− 1
n
<

n
n + 1

= 1− 1
n + 1

<
n
n
= 1

Both 1− 1
n

on the left and 1 on the right go to 1,
so the sequence is squeezed or sandwiched between two
sequences
both of which go to 1. So the limit of given sequence is also 1.
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Exercise 1 – Using L’Hospital’s rule

You can also use L’Hospital’s because
both numerator and denominator go to∞.

lim
x→∞

x
x + 1

= lim
x→∞

x ′

(x + 1)′
= lim

x→∞

1
1
= 1.

Since the real valued function
x

x + 1
→ 1 as x →∞,

the sequence
n

n + 1
→ 1 as well.
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Limit of a sequence – boundedness

THEOREM: EVERY BOUNDED, MONOTONIC SEQUENCE IS
CONVERGENT.

Proof is based on the COMPLETENESS AXIOM for the set of
real numbers:
Every non-empty, bounded above subset of R has a least upper
bound
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Limit of a sequence – boundedness – proof

PROOF: Assume that sequence is monotonic increasing.
(Proof is similar if decreasing).
Suppose L is a least upper bound for an. Then for any ε > 0 we
must have aN > L− ε for some N.
Since sequence is increasing, an > aN > L− ε for all n ≥ N.
Also an < L because L is upper bound, so L− ε < an < L for all
n ≥ N.
Hence |an − L| < ε,∀n ≥ N and so an → L as n→∞.
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Infinite Sums with Finite Value

IS IT POSSIBLE TO ADD AN
INFINITE SET OF NUMBERS
AND GET A FINITE VALUE AS
ANSWER?
ANSWER: YES!! Kind of
happened with integrals:
Gabriel’s horn has finite
volume.
YOU CAN THINK OF SUM ON
RIGHT AS AN
APPROXIMATION TO AN
INTEGRAL!

Note: None of these values equal  zero!

1/2

1/4

1/8

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5
Values of 1/2^n
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Infinite Sums with Finite Value – 2

SO WHAT IS THE SUM?
NOTICE THE PATTERN:
1
2 + 1

4 = 3
4 = 1− 1

4
1
2 +

1
4 +

1
8 = 3

4 +
1
8 = 7

8 = 1− 1
8 ...

In general,
1
2 + 1

4 + ....+ 1
2n = 1− 1

2n

The reason this is happening is
that each time we are adding
half the distance between the
previous sum and 1.

Sum of the values of 1/2^i for i=1,2,...,n

as n goes from 1 to 10 

1 /2

1/2+1/4

1/2+1/4+1/8

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
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Geometric Sequence sum

FORMULA FOR SUM OF GEOMETRIC SEQUENCE

S(n) = 1 + r + r2 + ...rn

=⇒ rS(n) = r + r2 + ...+ rn+1

=⇒ (1− r)S(n) = 1− rn+1

=⇒ S(n) =
1

1− r

(
1− rn+1

)
THE ABOVE FORMULA IS VALID FOR ANY r 6= 1 !!
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Example 1 – Geometric sequence

Suppose you deposit $ 5000 in an account each month for 10
years at a return of i = 0.08 (8 percent)
The amount from the first month results in 5000(1 + i)10 after
10 months.
The amount from the second month results in 5000(1+ i)9 after
9 months.
and so on .....
The last amount gives no return, so results in just 5000.
What is the total amount that you would have after 10 months?
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Answer for Example 1

Use formula for geometric series :

1 + r + r2 + ....+ rn−1 =
1− rn

1− r
.

Here we have r = 1 + i = 1.08.

S(10) = 5000 + 5000r + 5000r2 + ...+ 5000r10

=⇒ S(10) = 5000(1 + r + ...+ r10)

=⇒ S(10) = 5000× 1− r11

1− r

=⇒ S(10) = 5000× 1− (1.08)11

1− 0.08

=⇒ S(10) = 5000× 1.3316
0.08

= 83,227.44$
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What is a series?

A SERIES IS A SEQUENCE OF SUMS

We call the limit of the series as the limit of the sum.

Note that the limit of an is not the same as limit of
∑

an !
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Infinite sum or geometric series sum

Using the formula

1 + r + r2 + ...+ rn−1 =
1− rn+1

1− r

1 +
1
2
+

1
4
+ ...+

1
2n =

1
1− (1/2)

(
1− 1

2n+1

)
= 2

(
1− 1

2n+1

)
= 2− 1

2n

=⇒ 1
2
+

1
4
+ ...+

1
2n = 1− 1

2n → 1 as n→∞.

We say that
∞∑

k=1

1
2k = 1.
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Question on series

Find an ε such that the geometric series sum sn is within
0.0001 of 2.
Here sn is the sum of the sequence 1, 1/2, 1/4, .....1/2n...
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Infinite geometric series – properties

Just as with integrals,
∞∑

k=1

ak = lim
n→∞

n∑
k=1

ak .

We say the limit of
n∑

k=1

ak approaches L if

∣∣∣∣∣
n∑

k=1

ak − L

∣∣∣∣∣→ 0 as

n→∞. Or in more fancy words, for some N, the distance∣∣∣∣∣
n∑

k=1

ak − L

∣∣∣∣∣ < ε for any ε > 0 whenever n > N.

Here we have

∣∣∣∣∣
n∑

k=1

ak − L

∣∣∣∣∣ =
∣∣∣∣(1

2
+

1
4
+ ...+

1
2n

)
− 1
∣∣∣∣ =∣∣∣∣(1− 1

2n

)
− 1
∣∣∣∣ = 1

2n → 0
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Infinite geometric series – properties

In general, if −1 < r < 1 then the sum of the geometric series

1 + r + ...+ rn =
1− rn+1

1− r
→ 1

1− r
.

If r > 1 or r < −1 (i.e, |r | > 1) then the series diverges.
If the geometric sequence starts with a number a instead of 1,
the sum equals

a+ar+...+arn = a(1+r+r2+...+rn) = a
(

1− rn+1

1− r

)
→ a

1− r
.
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A telescoping series

The sum of the sequence
1

k(k + 1)
=

1
2
,
1
6
,

1
12
, ... is an

example of a telescoping sum.

n∑
k=1

1
k(k + 1)

=
n∑

k=1

(
1
k
− 1

k + 1

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)

+

(
1
3
− 1

4

)
+ ...+

(
1

n − 1
− 1

n

)
+

(
1
n
− 1

n + 1

)
= 1− 1

n + 1

So this sum is also finite, approaching 1.

Note that this is close to the sum of 1/k2.
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Example 2: telescoping series

ANOTHER TELESCOPING SUM (11.2.48)

∞∑
k=2

1
n3 − n

Note that the sum starts with a2, not a1.
[In fact, you can ignore first several terms when testing
convergence and finding sum].
Start by factoring n3 − n to get n(n2 − 1) = n(n − 1)(n + 1).
Next use partial fraction decomposition.
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Example 2: telescoping series – page 2

1
n3 − n

=
−1
n

+
1

2(n − 1)
+

1
2(n + 1)

.

You can try to write out this sum and cancel terms but it is
easier if you modify it first.
Write
−1
n

+
1

2(n − 1)
+

1
2(n + 1)

=
−1
2n

+
−1
2n

+
1

2(n − 1)
+

1
2(n + 1)

and then rearrange it as
1
2

(
1

(n − 1)
− 1

n
+

1
n + 1

− 1
n

)
.

So
∞∑

k=2

1
n3 − n

=
1
2

∞∑
k=2

(
1

(n − 1)
− 1

n

)
+

1
2

∞∑
k=2

(
1

n + 1
− 1

n

)
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Example 2: telescoping series – page 3

The two sums on the right are telescoping sums.

In fact you can show that the first is
1
2

(
lim

n→∞
1− 1

n

)
and that the second is −1

2

(
lim

n→∞

(
1
2
− 1

n + 1

))
in exactly the same way as we evaluated the telescoping sum

n∑
k=1

1
k(k + 1)

.
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Example 2: telescoping series – page 4

Finally
∞∑

k=2

1
n3 − n

=
1
2

(
lim

n→∞
1− 1

n

)
− 1

2

(
lim

n→∞

(
1
2
− 1

n + 1

))
=

1
2
− 1

4
=

1
4
.
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If sum is finite, terms go to zero

You might have noticed that in the sum of geometric series, the
terms get very small, in fact they are almost equal to zero,
eventually.
Without this it would not be possible to add infinitely many and
still get a finite sum.
This is stated as a theorem (proven fact) below:

Theorem: If
∞∑

k=1

ak = L, a finite quantity, then the n−th term

an → 0.
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Proof: If sum is finite, terms go to zero

The following proof of this theorem is slightly different from
book proof.
Here only to show you how you logically establish what I just
mentioned above.

Proof: As we saw in previous page,
∞∑

k=1

ak = L means that∣∣∣∣∣
∞∑

k=1

ak − L

∣∣∣∣∣ < ε for any ε however small for all n eventually.

If |(a1 + a2 + ...+ an−1 + an)− L| < ε for all n > N,
then in particular it is true for both n and n + 1.
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Proof: If sum is finite, terms go to zero – continued

So |(a1 + a2 + ...+ an−1 + an)− L| < ε and
|(a1 + a2 + ...+ an−1 + an + an+1)− L| < ε.
Remember the triangle inequality |A + B| ≤ |A|+ |B|.
(If you haven’t seen it just assume it true for the moment).
Let Sn = a1 + a2 + ...+ an−1 + an,
A = Sn+1−L = a1+a2+ ...+an−1+an+an+1−L,A+B = an+1.
Then B = L− (a1 + a2 + ...+ an−1 + an) = L− Sn.
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Proof: If sum is finite, terms go to zero – conclusion

Note that |L− Sn| = | − (Sn − L)| = |Sn − L| because both
positive and negative of same number have same absolute
value.
By above conclusion we have |Sn − L| < ε AND |Sn+1 − L| < ε.
Now |A + B| ≤ |A|+ |B| =⇒ |an+1| ≤ |Sn+1 − L|+ |L− Sn| =
|Sn+1 − L|+ |Sn − L| < ε+ ε = 2ε.
So an+1 can also get as small as we want.
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Divergence Test

NOTE: The reverse doesn’t work, though.
The terms can go to zero, but still the sum can be infinite!

As shown in book, 1 +
1
2
+

1
3
+ ...+

1
n
+ ..

goes to infinity.
You can kind of see it using the integral of 1/x .
But if an does not go to zero, then the series is guaranteed to
diverge.
This is called the divergence test.
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Divergence Test – example

WARNING: THE SUM OF THE SERIES AND
THE LIMIT OF THE TERMS OF THE SEQUENCES

ARE TWO DIFFERENT THINGS.

The sequence {n/(n + 1)} → 1 i.e, 1,
1
2
,
2
3
,
3
4
, ...→ 1 but the

sum 1 +
1
2
+

2
3
+ ...+

n
n + 1

+ .. does not go to 1.

In fact by the divergence test the sum is not finite because the
n−th term an = n/(n + 1)→ 1 and not to 0.
We can actually prove it goes to∞ because the terms all are
about 1 eventually and so you are just adding 1 repeatedly.
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EXAMPLE 3: DIVERGENCE TEST

∞∑
n=1

e1/n

This diverges by the divergence test.

Since 1/n→ 0 as n→∞, we get that e1/n → e0 = 1 using the
continuity of ex .

Thus an does not go to zero and the series diverges.
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Oscillating Series

A SEQUENCE THAT HAS DIVERGENT SUM BUT NOT
INFINITE SUM

Consider 1,0,−1,0,1,0,−1,0,1,0, ....
This sequence oscillates and hence never goes to 0.
(In fact it is an = sin(nπ/2) as seen in class).
You can see that the sum goes like 1,1,0,0,1,1,0,0, ...
This does not have a limit because the distance of this
sequence of sums from any fixed number never goes to zero.
In other words, it doesn’t stay close to any one particular
number, no matter how many terms of 1,0,−1,0, ... you add up.
The sums are always alternating between 1 and 0 instead of
staying close to one of the two.
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Example 4: Geometric Series

ANOTHER GEOMETRIC SEQUENCE

Does the series
∞∑

n=1

(−1)n

3n converge?

If so, what is the sum?
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Example 4: Geometric Series – answer

n−th term
(−1)n

3n → 0.
This can be seen by using the squeeze or sandwich theorem:
−1
3n ≤

(−1)n

3n ≤ 1
3n .

The sequences on the left and right both go to 0 so the given
sequence will also go to 0.
You can also say that this is a geometric sequence with
r = −1/3.
Since −1 < r < 1 the sequence will go to zero.
Since the n−th term goes to zero, the series may converge.
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Example 4: Geometric Series – continued

In this case, we can show not only that it does converge, but
also find the sum because it is a geometric series.

The sum goes as
−1
3
,
1
9
,
−1
27

, ... with the first term being

a =
−1
3

and the common ratio being the same, i.e, r =
−1
3
.

Since |r | = 1/3 < 1, the series converges and the sum is given
by

a
1− r

=
−1/3

1− (−1/3)
=
−1/3
4/3

=
−1
3
× 3

4
=
−1
4
.
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