Howard University Math Department

EACH PROBLEM 20 POINTS

- 1. True or False? Prove if true and provide counterexample or disprove if false.
 - (a) For any $n \in \mathbb{Z}$, $n^2 + 1$ is either odd or 2 times an odd number.
 - (b) The negative Pell's equation $x^2 20y^2 = -1$ has a solution.
 - (c) It is possible to find positive integers N such that $\left|\pi \frac{N}{10^k}\right| < \frac{1}{10^k}$ for any $k = 0, 1, 2, 3, \dots$

(d)

$$\sqrt{1+\sqrt{1+\sqrt{1+\dots}}} = \frac{1+\sqrt{5}}{2} \quad (golden\ ratio!)$$

- 2. Show that $\sqrt{3} = 1.73205...$ is irrational. Find the fraction x/y with $y \le 20$ that gives the closest approximation to $\sqrt{3}$.
- 3. Find five different solutions to $x^2 6y^2 = 3$ using the solutions of $x^2 6y^2 = 1$.
- 4. Using the pigeonhole principle, show that there are at least two positive integers $m, n \in S = \{1, 2, 3, ..., 100\}$ such that $m \equiv n \pmod 9$ and $m \equiv n \pmod 11$. Then show that there are exactly two such integers. What are they?
- 5. For the elliptic curve $y^2 = x^3 + 1$ show that P = (-1,0) and Q = (0,1) are two rational (actually integer) points.
 - (a) Show that P + Q = R = (2, -3), 2P = 0, and 3Q = 0 using the geometric addition method (i.e, finding mirror image of third intersection).
 - (b) Using only algebra and the 3 relations above, show that P = -P, 2Q = -Q, P + R = Q, Q + R = P Q, 2R = -Q, 3R = P. Also from P + Q = R get that -R = P Q.
 - (c) Show that the group generated by P and Q (i.e, kP + mQ for any $m, n \in \mathbb{Z}$) is a cyclic group isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ and generated by P + Q.

(Indeed, it is known that the set of all rational points is given by the above group! Harder to prove that, though.)