Instructions:
PLEASE PROVIDE STEP BY STEP EXPLANATIONS
ANSWERS WITHOUT EXPLANATION WILL ONLY GET 40 percent
Time Limit 30 minutes ; Total 50 points
Please read the questions carefully before answering
It is recommended that you try those problems you are most comfortable with, first.
Attempt as many as you can; Anything over 50 is extra credit.

1. (10 points) Say whether each statement is true or false. If true prove your statement. [It is NOT enough to give just one example]. Otherwise, prove that it is false or provide a counterexample.
If a vector field \mathbf{F} is the gradient of a function $f(x, y, z)$ all of whose second partial derivatives are continuous at every point (x, y, z) in a region S then $\operatorname{curl} \mathbf{F}=\mathbf{0}$ at all points of S.

Solution.
True. This is actually exercise 38 in 15.1. We have

$$
\begin{gathered}
\operatorname{curl} \mathbf{F}=\operatorname{curl} \nabla f=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{x} & f_{y} & f_{z}
\end{array}\right| \\
=\left(f_{z y}-f_{y z}\right) \mathbf{i}+\left(f_{x z}-f_{z x}\right) \mathbf{j}+\left(f_{y x}-f_{x y}\right) \mathbf{k}
\end{gathered}
$$

All the components of this vector zero because the $f_{x y}-f_{y x}=0$ and so on. The equality of the mixed second partial derivatives is true because the second partial derivatives are all given to be continuous.
2. (20 points) For $\mathbf{F}=e^{x y} \mathbf{i}-\cos y \mathbf{j}+\sin ^{2} z \mathbf{k}$ find $\operatorname{div} \mathbf{F}, \operatorname{cur} l \mathbf{F}$ and $\operatorname{div}(\operatorname{curl} \mathbf{F})$.

Soln: This is exercise 20 in 15.1. As discussed in class, div(curl) is always zero.

$$
\operatorname{div} \mathbf{F}=\left(e^{x y}\right)_{x}+(-\cos y)_{y}+\left(\sin ^{2} z\right)_{z}=y e^{x y}+\sin y+2 \sin z \cos z
$$

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathbf{e}^{x y} & -\cos y & \sin ^{2} z
\end{array}\right|=0 \mathbf{i}+0 \mathbf{j}+\left(0-x e^{x y}\right) \mathbf{k}=-x e^{x y} \mathbf{k} .
$$

3. (20 points) Evaluate the integral $\oint_{C} x d y-y d x$ where C is the circle $x^{2}+y^{2}=1$ first using a parametric equation for the circle and then using Green's theorem.

Soln:
The parametric equation is $x=\operatorname{cost}, y=\sin t$ with $0 \leq t \leq 2 \pi$.
Plugging these equations into the integral, we get

$$
\oint_{C} x d y-y d x=\int_{0}^{2 \pi} \operatorname{cost}(\cos t d t)-\sin t(-\sin t d t)=\int_{0}^{2 \pi} d t=2 \pi
$$

Note: If you want $\mathbf{F} \cdot d \mathbf{r}=x d y-y d x$ then you need $\mathbf{F}=$ $-y \mathbf{i}+x \mathbf{j}$.

For using Green's theorem, we first write $x d y-y d x$ as $\mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=<-y, x>$. The circle is simply connected with a simple closed boundary and the functions $-y$ and x satisfy the desired continuity and differentiability conditions.

According to green's theorem, we get

$$
\oint_{C} x d y-y d x=\iint\left(\frac{\partial x}{\partial x}-\frac{\partial(-y)}{\partial y}\right) d A=\iint 2 d A=2 \pi .
$$

The last integral equals 2π because $\iint d A$ over the circle is just the area of the circle of radius 1 .
4. (Bonus, 15 points) Find the work done by the force of gravity (assume $\mathbf{F}=m g$ with $g=32$ feet $/ \mathrm{sec}^{2}$) while moving body of mass 10 pounds along an inclined plane of length 100 feet at 45 degrees to the horizontal by using a line integral. Then compute the same using the formula Work $=$ Force times distance.

Soln:
The inclined plane has slope $\tan 45=1$. The height of the inclined plane is given by $\sin (45)=h / 100$ which means $h=100(1 / \sqrt{2})=$ 70.71 feet. Since slope is 1 , the rise equals the run and thus the top of
the inclined plane will be at $(70.71,70.71)$ if the bottom is at $(0,0)$. This is a line with equation $y=x$. The equation is $\mathbf{r}=\langle x, y\rangle$.The force is given by $(0,-320)$ because gravity is along the negative y-direction. Note that the body is going from the top to the bottom. So the integral is

$$
\int_{70.71}^{0}<0,-320><d x, d y>=\int_{70.71}^{0}-320 d y=320(70.71)=22627.2
$$

The force is measured in lb-feet/sec/sec.
Using the usual formula we first need to find the force along the inclined plane. This is given by $\mathbf{F} \cos 45=320\left(\frac{1}{\sqrt{2}}\right)$. This times distance equals $320(100 / \sqrt{2})=22627.2 \mathrm{lb}-f e e t / \mathrm{sec} / \mathrm{sec}$.

