4/15/2011

## Instructions:

## PLEASE PROVIDE STEP BY STEP EXPLANATIONS

ANSWERS WITHOUT EXPLANATION WILL ONLY GET 40 percent Time Limit 30 minutes ; Total 50 points
Please read the questions carefully before answering
It is recommended that you try those problems you are most comfortable with, first.
Attempt as many as you can; Anything over 50 is extra credit.

1. (10 points) Say whether each statement is true or false. If true prove your statement. [It is NOT enough to give just one example]. Otherwise, prove that it is false or provide a counterexample.

$$
\begin{gathered}
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} z^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x \\
=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{5} \cos ^{2} \phi \sin \phi d \rho d \phi d \theta
\end{gathered}
$$

## Solution.

True.This is worked out in example 4, section 14.6. The solid of integration is just the upper hemisphere of a sphere of radius 2 .
2. (20 points) Find the volume of the solid bounded by the surface $z=x^{2}+y^{2}$ and the planes $x=y, y=0, z=0$ and $x=1$. Use triple integrals and rectangular ( or cylindrical ) co-ordinates.[Note: Cylindrical is harder!]

Soln: This is a solid in the first octant ( $x, y, z$ are all positive).
In the $x y$ plane under the solid, the region of integration is bounded by the $x$-axis $(y=0)$, the line $x=y$ and the line $x=1$.

As $x$ goes from 0 to $1, y$ goes from 0 to $x$.
The top of the solid is the part of the paraboloid $z=x^{2}+y^{2}$ in the first octant.

So $z$ goes from 0 to $x^{2}+y^{2}$.

So the integral is

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{x} \int_{0}^{x^{2}+y^{2}} d z d y d x= & \int_{0}^{1} d x \int_{0}^{x}\left(x^{2}+y^{2}\right) d y=\int_{0}^{1}\left[x^{2} y+\frac{y^{3}}{3}\right]_{0}^{x} d x \\
& =\int_{0}^{1} \frac{4 x^{3}}{3} d x=\frac{1}{3}
\end{aligned}
$$

## In cylindrical coordinates:

The angle $\theta$ in the $(r, \theta)$ plane goes from 0 to $\pi / 4$ as the polar ray sweeps from the $x$-axis to the line $x=y$ which makes an angle 45 degrees or $\pi / 4$ radians with $x$-axis.

For each $\theta, r$ goes from 0 to $\sec \theta$ because $r$ goes from 0 to the line $x=1$ where it is given by $r \cos \theta=1$.

For each $(r, \theta)$ the $z$ value goes from 0 to $x^{2}+y^{2}=r^{2}$.
So the integral in cylindrical coordinates is

$$
\begin{gathered}
\int_{0}^{\pi / 4} \int_{0}^{\sec \theta} \int_{0}^{r^{2}} r d z d r d \theta=\int_{0}^{\pi / 4} d \theta \int_{0}^{\sec \theta} r[z]_{0}^{r^{2}} d r=\int_{0}^{\pi / 4} \frac{\sec ^{4} \theta}{4} d \theta \\
=\frac{1}{4}\left[\frac{\sec ^{2} \theta \tan \theta}{3}+\frac{2}{3} \int \sec ^{2} \theta d \theta\right]_{0}^{\pi / 4}[\text { formula }(20), 7.3, p .503] \\
=\frac{1}{4}\left[\frac{2}{3}+\frac{2}{3}\right]=\frac{1}{3}
\end{gathered}
$$

3. (20 points) Evaluate the following integral:

$$
\int_{0}^{\pi / 2} \int_{0}^{\cos \theta} \int_{0}^{r^{2}} r \sin \theta d z d r d \theta
$$

(10 points bonus) Describe the solid over which this integral is evaluated.

Soln:

$$
\int_{0}^{\pi / 2} \int_{0}^{\cos \theta} \int_{0}^{r^{2}} r \sin \theta d z d r d \theta=\int_{0}^{\pi / 2} \sin \theta d \theta \int_{0}^{\cos \theta} r d r \int_{0}^{r^{2}} d z
$$

$$
=\int_{0}^{\pi / 2} \sin \theta d \theta \int_{0}^{\cos \theta} r\left(r^{2}\right) d r=\int_{0}^{\pi / 2} \sin \theta d \theta\left(\frac{\cos ^{4} \theta}{4}\right)
$$

Letting $u=\cos \theta$ this integral becomes

$$
\int_{0}^{\pi / 2} \sin \theta d \theta\left(\frac{\cos ^{4} \theta}{4}\right)=\int_{1}^{0} \frac{u^{4}}{4}(-d u)=\int_{0}^{1}\left(u^{4} / 4\right) d u=\frac{1}{20}
$$

The solid is the part of the paraboloid $z=r^{2}$ in the first octant that lies over the circle $r=\cos \theta$ which has center at $(1 / 2,0)$ and radius $1 / 4$.

THIS PROBLEM IS EASY!! 4. (Bonus, 15 points) Use parametric equations to show that the surface area of a sphere of radius $R$ is $4 \pi R^{2}$.

Soln:
Let $u=x, v=y$. Then $z=f(u, v)=f(x, y)=\sqrt{R^{2}-x^{2}-y^{2}}$ and

$$
\begin{gathered}
\left\|\frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y}\right\|=\sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} \\
=\sqrt{\frac{x^{2}}{R^{2}-x^{2}-y^{2}}+\frac{y^{2}}{R^{2}-x^{2}-y^{2}}+1}=\frac{R}{\sqrt{R^{2}-x^{2}-y^{2}}}
\end{gathered}
$$

[Note: if you want to convert $\sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1}$ to polar coordinates here then you must use

$$
\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}=\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}
$$

Note that there is a $1 / r^{2}$ term multiplied with $\left(\frac{\partial z}{\partial \theta}\right)^{2}$. This is worked out in exercise 55 of 13.5].

So the surface area is given by the integral

$$
2 \int_{-R}^{R} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} \frac{R}{\sqrt{R^{2}-x^{2}-y^{2}}} d y d x
$$

[Need to multiply by 2 to get both upper and lower hemispheres]
This is better evaluated using polar coordinates. $\theta$ will go from 0 to $2 \pi$ and for each $\theta, r$ will go from 0 to $R$. We will get

$$
\begin{aligned}
& 2 \int_{0}^{2 \pi} \int_{0}^{R} \frac{R}{\sqrt{R^{2}-r^{2}}} r d r d \theta=R \int_{0}^{2 \pi} d \theta \int_{0}^{R} \frac{2 r d r}{\sqrt{R^{2}-r^{2}}} \\
& =R \int_{0}^{2 \pi} d \theta \int_{0}^{R^{2}} \frac{d u}{\sqrt{u}}=R \int_{0}^{2 \pi} d \theta[2 \sqrt{u}]_{0}^{R^{2}}=4 \pi R^{2}
\end{aligned}
$$

