1. (10 points) Say whether each statement is true or false. In each case, explain why it is true/false or give counter-example. If true it is NOT enough to give just one example.
(a) If $f(x, y, z)=f(x(t), y(t), z(t))$ then $\frac{d f}{d t}=\frac{d f}{d x} \frac{d x}{d t}+\frac{d f}{d y} \frac{d y}{d t}+\frac{d f}{d z} \frac{d z}{d t}$.
[Note: $\frac{d}{d x}$ is not same as $\frac{\partial}{\partial x}$].
(b)If $\nabla F=0$ for $F(x, y, z)$ at a point P , then at P the derivative of F along any vector \mathbf{u} is zero.

Soln:
1a) FALSE. One should have $\frac{\partial f}{\partial x}$ etc instead of $\frac{d f}{d x}$ etc.,
1b) True, because the directional derivative along any vector is a multiple of the scalar product of the gradient with that vector. Since gradient is given to be 0 and scalar product of any vector with the zero vector is zero, the directional derivative also is zero. [In fact it is equal to $\nabla F \cdot \mathbf{u}_{1}$ where \mathbf{u}_{1} is the unit vector along $\left.\mathbf{u}\right]$.
2(a). (10 points) Given $f(x, y)=x^{2}+y^{2}$ and $x=u+v, y=u-v$ find f_{u}, f_{v} in terms of u, v.
2(b). (10 points) Using the f in (a), Write $f(x, y)=1$ as $g(u, v)=1$ by substituting for x, y with u, v as given. From this equation find $\frac{d u}{d v}$ using implicit differentiation.

Soln:
2a) $f_{u}=f_{x} x_{u}+f_{y} y_{u}=(2 x)(1)+(2 y)(1)=2 x+2 y=4 u$ and
$f_{v}=f_{x} x_{v}+f_{y} y_{v}=(2 x)(1)+(2 y)(-1)=2 x-2 y=4 v$.
2b) Plugging in $x=u+v, y=u-v$ we get $(u-v)^{2}+(u+v)^{2}=2 u^{2}+2 v^{2}=$ 1. So $g(u, v)=2 u^{2}+2 v^{2}$. Then $\frac{d u}{d v}=-g_{v} / g_{u}=-4 v /(4 u)=-v / u$.

Notice that this is same as $-f_{v} / f_{u}$. That is because f and g are really the same when considered as functions of u, v.
3. (20 points) Describe the intersection of the sphere $x^{2}+y^{2}+z^{2}=2$ with the cone $z^{2}=x^{2}+y^{2}$. Find the equation of the tangent planes of the two surfaces at $(0,1,1)$. Show that, in fact, the tangent planes of the two surfaces are perpendicular to each other at all the points of intersection.

Soln:

The intersection is given by combining the two equations and getting the common solutions. Plugging in $z^{2}=x^{2}+y^{2}$ into the first equation we get $z^{2}+z^{2}=2$ which gives $z^{2}=1$ or $z= \pm 1$. Thus the two equations intersect on the planes $z=1$ and $z=-1$. But $z= \pm 1$ gives $x^{2}+y^{2}=1$. Thus the points of intersection are on the circles of radius 1 centered on the z-axis and sitting in the $z=1$ and $z=-1$ planes. [So the circles have centers at $(0,0,1)$ and $(0,0,-1)]$.

At $(0,1,1)$ the normals to the planes are given by $\mathbf{n}_{1}=\nabla F$ for the sphere and $\mathbf{n}_{2}=\nabla G$ for the cone where $F=x^{2}+y^{2}+z^{2}$ and $G=z^{2}-x^{2}-y^{2}$.

So we get $\mathbf{n}_{1}=\nabla F=<\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}>=<2 x, 2 y, 2 z>=<0,2,2>$ at $(0,1,1)$.

And we have $\mathbf{n}_{2}=\nabla G=<\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}, \frac{\partial G}{\partial z}>$
$=<-2 x,-2 y, 2 z>=<0,-2,2>$ at $(0,1,1)$.
[Note that these two vectors are perpendicular -their dot product is zero].

The tangent plane to the sphere at $(0,1,1)$ is given by $0(x-0)+$ $2(y-1)+2(z-1)=2 y+2 z-4=0$ which is same as $y+z=2$.

The tangent plane to the cone at $(0,1,1)$ is given by $0(x-0)-2(y-$ $1)+2(z-1)=-2 y+2 z=0$ which is same as $y-z=0$.

From these calculations we can see that at a general point of intersection $(x, y, \pm 2)$ we have $\mathbf{n}_{1}=<2 x, 2 y, \pm 2>$ and $\mathbf{n}_{2}=<-2 x,-2 y, \pm 2>$.

But then $\mathbf{n}_{1} \cdot \mathbf{n}_{2}=<2 x, 2 y, \pm 2>\cdot<-2 x,-2 y, \pm 2>=-4 x^{2}-$ $4 y^{2}+4$. We also know the points of intersection satisfy $x^{2}+y^{2}=1$. So upon multiplying by 4 we get $-4 x^{2}-4 y^{2}+4=\mathbf{n}_{1} \cdot \mathbf{n}_{2}=0$ for all these points! Thus the the tangent planes will be perpendicular at every point where the given sphere and the cone intersect.
4. (Challenge, 15 points) If $f(x, t)=\int_{0}^{t} e^{u^{2} x} d u$ show that f satisfies the equation $f(x, t)+2 x f_{x}=t e^{x t^{2}}$.

Soln:
Since the integral limits are independent of x and the integration itself is not over x we can differentiate under the integral sign.
[Use basic definition of partial derivative to see that f_{x} is the limit of $(1 / \Delta x)\left[\int_{0}^{t} e^{u^{2}(x+\Delta x)} d u-\int_{0}^{t} e^{u^{2} x} d u\right]=(1 / \Delta x)\left[\int_{0}^{t}\left(e^{u^{2}(x+\Delta x)}-e^{u^{2} x}\right) d u\right]$.

Differentiating under the integral we get $f_{x}=\int_{0}^{t} u^{2} e^{u^{2} x} d u$. Using integration by parts (with $d U=2 u x e^{u^{2} x}$ and $V=u / 2 x$) we have $\int u^{2} e^{u^{2} x} d u=(u / 2 x) e^{u^{2} x}-\int \frac{e^{u^{2} x}}{2 x} d u$. Plug everything back into the integral for f_{x} and evaluate at 0 and t to get $f_{x}=\frac{t e^{x t^{2}}}{2 x}-(1 / 2 x) f(x, t)$. [$(1 / 2 x)$ can be taken out of the second integral because the integration is over u and not x]. Simplify to get the desired equation.

