Instructions:

PLEASE PROVIDE STEP BY STEP EXPLANATIONS

ANSWERS WITHOUT EXPLANATION WILL ONLY GET 40 percent
Time Limit 30 minutes ; Total 50 points
Please read the questions carefully before answering
It is recommended that you try those problems you are most comfortable with, first.
Attempt as many as you can; Anything over 50 is extra credit.

1. (10 points) Say whether each statement is true or false. In each case, explain why it is true/false or give counter-example. If true it is NOT enough to give just one example.
(a) Level surfaces of a function of three variables $f(x, y, z)$ are always obtained by graphing $f(x, y, z)=0$.
(b) $\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}=1$.

Soln:
1a) FALSE. Level surfaces of a function of three variables $f(x, y, z)$ are obtained by graphing $f(x, y, z)=k$ and k need not always be 0 .
1b) FALSE. This limit does not exist. If you approach $(0,0)$ along the y-axis you get

$$
\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}=\operatorname{Lim}_{(0, y) \rightarrow(0,0)} \frac{-y}{y}=-1 .
$$

If you approach $(0,0)$ along the x-axis you get

$$
\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}=\operatorname{Lim}_{(x, 0) \rightarrow(0,0)} \frac{x}{x}=1
$$

2(a). (10 points) Describe the domain of $f(x, y, z)=\ln \left(x^{2}+y^{2}+z^{2}\right)$. 2(b). (10 points) Describe the largest region in which the function $\frac{x-y}{x+y}$ is continuous.

Soln:

2a) Need $x^{2}+y^{2}+z^{2}>0$ in order for $\ln \left(x^{2}+y^{2}+z^{2}\right)$ to be defined. This set is the set of all points in \mathbf{R}^{3} other than $(0,0,0)$ because $x^{2}+y^{2}+z^{2}>0$ for all other values of (x, y, z). So the domain is all points in 3-space other than $(0,0,0)$.
$2 \mathrm{~b})$ Both numerator and denominator are polynomials. So this function is continuous wherever the denominator is not zero. So wherever $x+y \neq 0$ the function is continuous. Hence the answer is: the set of all points of the plane not on the line $x+y=0$.
3a. (10 points) Given that $f(x, y)=x y e^{x}$ find $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y}$.
3b.(10 points) Given that $w=f(x, y, z)$ and $w^{4}+x^{4}+y^{4}+z^{4}=0$ find $\frac{\partial w}{\partial x}$ using implicit differentiation. Explain why you can write down $\frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}$ using the answer for $\frac{\partial w}{\partial x}$ without actually doing implicit differentiation again.

Soln:
3(a): $f_{x}=y\left(x e^{x}\right)_{x}=y\left(e^{x}+x e^{x}\right)=y e^{x}+y x e^{x}=y e^{x}(x+1)$.
$f_{y}=x e^{x}(y)_{y}=x e^{x}$.
$f_{x x}=\left(f_{x}\right)_{x}=\left(y e^{x}+y x e^{x}\right)_{x}=y e^{x}+y\left(x e^{x}\right)_{x}=y e^{x}+y e^{x}+y x e^{x}=$ $y e^{x}(x+2)$.
$f_{y y}=\left(f_{y}\right)_{y}=0$ because there is no y in f_{y}.
$f_{x y}=\left(f_{x}\right)_{y}=\left(y e^{x}(x+1)\right)_{y}=e^{x}(x+1)$.
Note that $f_{y x}=\left(f_{y}\right)_{x}=\left(x e^{x}\right)_{x}=e^{x}+x e^{x}=e^{x}(x+1)=f_{x y}$.
Solution for (b):
Differentiating implicitly we get $4 w^{3} \frac{\partial w}{\partial x}+4 x^{3}=0$.
Solving, we get $\frac{\partial w}{\partial x}=-4 x^{3} /\left(4 w^{3}\right)=-x^{3} / w^{3}$.
Since the equation is symmetrical in x, y, z, by looking at this answer we can say that

$$
\frac{\partial w}{\partial y}=-y^{3} / w^{3}, \frac{\partial w}{\partial z}=-z^{3} / w^{3} .
$$

4. (Challenge, 15 points) The legs of a right triangle are 3 cm and 4 cm , with a maximum error of 0.05 cm in each measurement. Use differentials to approximate the maximum possible error in the value of the hypotenuse and the area of the rectangle.

Soln:
Let x and y represent the lengths of the legs. Let $A(x, y)=(x y) / 2$ be the area and $H(x, y)=\sqrt{x^{2}+y^{2}}$ be the hypotenuse.

Then we have $d A=A_{x} d x+A_{y} d y=\frac{y}{2} d x+\frac{x}{2} d y=(3 / 2)(0.05)+$ $(4 / 2)(0.05)=0.175$. This is approximately the maximum possible error in the calculated value of the area.

Similarly $d H=H_{x} d x+H_{y} d y=2 x \frac{(1 / 2)}{\sqrt{x^{2}+y^{2}}} d x+2 y \frac{(1 / 2)}{(1 / 2) \sqrt{x^{2}+y^{2}}} d y=$ $\frac{3(0.05)+4(0.05)}{5}=0.07$ is approiximately the maximum error in the hypotenuse.

