2/18/2011 Spring 2011, Calculus III Quiz 4 Sitaraman

Instructions:

PLEASE PROVIDE STEP BY STEP EXPLANATIONS

ANSWERS WITHOUT EXPLANATION WILL ONLY GET 40 percent

Time Limit 30 minutes; Total 50 points

Please read the questions carefully before answering

It is recommended that you try those problems you are most comfortable with, first.

Attempt as many as you can; Anything over 50 is extra credit.

- 1. (10 points) Say whether each statement is true or false. In each case, explain why it is true/false or give counter-example. If true it is NOT enough to give just one example.
- (a) The integral $\int_a^b ||\mathbf{r}'(t)|| dt$ gives the change in position $\mathbf{r}(b) \mathbf{r}(a)$ according to the fundamental theorem of calculus.
- (b) The curvature κ of a line is m where $\mathbf{r}(s) = \mathbf{r}_0 + s\mathbf{v}$ is the equation of the line with respect to the arc-length parameter s, and $\mathbf{v} = \langle m, m, m \rangle$ Soln:
- 1a) FALSE. The integral $\int_a^b ||\mathbf{r}'(t)|| dt$ actually gives s(b) s(a) according to the fundamental theorem, where s(b) s(a) is the arc length from a to b. To get the change in position vector you need to integrate $\mathbf{r}'(t)$.
- 1b) FALSE. The curvature of any line is 0 at all points.
- 2(a). (10 points) Find the arc length of the part of a curve given by $\mathbf{r}(t) = \langle e^t, e^{-t}, \sqrt{2}t \rangle$ when 0 < t < 1.
- 2(b). (10 points) Find the unit normal and tangent vectors $\mathbf{N}(0)$ and $\mathbf{T}(0)$ to the curve of part (a).

[Hint: May help to simplify $(e^t)^2 + (e^{-t})^2 + 2$ by writing it as a square] Soln:

2a) The arc length is given by

$$\int_0^1 \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt = \int_0^1 \sqrt{(e^t)^2 + (-e^{-t})^2 + (\sqrt{2})^2} dt$$
$$= \int_0^1 \sqrt{(e^t)^2 + (e^{-t})^2 + 2} dt = \int_0^1 \sqrt{(e^t + e^{-t})^2} dt = \int_0^1 (e^t + e^{-t}) dt$$

$$= [e^t - e^{-t}]_0^1 = [e - 1] - [\frac{1}{e} - 1] = e - (1/e) = 2.35.$$

2b) We have $\mathbf{r}'(t) = \langle e^t, -e^{-t}, \sqrt{2} \rangle$. $||\mathbf{r}'(t)||$ was found in part (a) to equal $e^t + e^{-t}$. Now we know that $T(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}$. So all we need to do is to plug in t = 0 in this formula, using $\mathbf{r}'(t)$ and $||\mathbf{r}'(t)||$ as found above.

$$T(0) = \frac{\mathbf{r}'(0)}{||\mathbf{r}'(0)||} = \frac{\langle e^0, -e^0, \sqrt{2} \rangle}{e^0 + e^0} = \langle \frac{1}{2}, -\frac{1}{2}, \frac{\sqrt{2}}{2} \rangle.$$

Similarly, to find $\mathbf{N}(0)$ we use the formula $\frac{\mathbf{T}'(0)}{||\mathbf{T}'(0)||}$. We have, using $\mathbf{r}'(t)$ and $||\mathbf{r}'(t)||$ as found above,

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} = <\frac{e^t}{e^t + e^{-t}}, -\frac{e^{-t}}{e^t + e^{-t}}, \frac{\sqrt{2}}{e^t + e^{-t}} > .$$

Now we have to find $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||}$ and then plug in 0. First we find (using quotient rule frequently)

$$\mathbf{T}'(t) = <\frac{2}{(e^t + e^{-t})^2}, -\frac{e^{-2t}}{(e^t + e^{-t})^2}, \frac{-\sqrt{2}(e^t - e^{-t})}{(e^t + e^{-t})^2} >$$

Now $\mathbf{N}(0) = \frac{\mathbf{T}'(0)}{||\mathbf{T}'(0)||}$.

Plugging in 0 for t in the $\mathbf{T}'(t)$ we get

$$\mathbf{T}'(0) = <\frac{1}{2}, -\frac{1}{4}, 0 > \text{ and its magnitude is } \sqrt{\frac{1}{4} + \frac{1}{16}} = \sqrt{5}/4.$$

So
$$\mathbf{N}(0) = <\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}, 0>$$

[Remember to first differentiate and then plug in t = 0. Also, note how $\mathbf{T}(t)$ is a unit vector but $\mathbf{T}'(t)$ isn't].

3a. (6 points) In two dimensions, write the equation of the circle of radius 2 with center at (0,0) in parametric vector form. i.e, give an equation for $\mathbf{r}(t)$, the position vector of a point on the circle.

3b.(8 points) Find the arc length parametrization of the circle in 3a.

3c.(8 points) Using 3b, find the curvature for any value of s.

Soln:

3(a): The parametric vector equation is $\mathbf{r}(t) = 2cost\mathbf{i} + 2sint\mathbf{j}$ where t is measured in radians and t is usually chosen to be in $[0, 2\pi]$.

3(b): The arc length from 0 to t is $s(t) = \int_0^t \sqrt{x'(u)^2 + y'(u)^2} \ du = 2t$. So t = s/2 and the arc length parametrization is:

$$\mathbf{r}(s) = 2\cos(s/2)\mathbf{i} + 2\sin(s/2)\mathbf{j}.$$

3(c): The curvature

$$\kappa = ||\mathbf{r}''(s)|| = ||-2(1/4)\cos(s/2)\mathbf{i} - 2(1/4)\sin(s/2)\mathbf{j}|| = 1/2.$$

Notice that curvature is reciprocal of the radius.

4. (Challenge, 15 points) Find the parametric vector equation (i.e, equation for $\mathbf{r}(t)$) of the curve whose tangent vector satisfies

 $\mathbf{r}'(t) = t \sin t \mathbf{i} + t e^t \mathbf{j} + \mathbf{k}$ and which curve also satisfies $\mathbf{r}(0) = \mathbf{i}$. Soln:

Let
$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
.
 $\mathbf{r}'(t) = tsint\mathbf{i} + te^t\mathbf{j} + \mathbf{k}$ means

$$x'(t) = tsint, \ y'(t) = te^t, \ z'(t) = 1.$$

Integrating, we get [Integrating by parts for first two equations]

$$x(t) = \int t \sin t dt = -t \cos t + \sin t + C_1, y(t) = t e^t - e^t + C_2, z(t) = t + C_3.$$

Letting t = 0 we get

$$x(0) = C_1, y(0) = -1 + C_2, z(0) = C_3.$$

Writing this in vector form we get $\mathbf{r}(0) = C_1 \mathbf{i} + (C_2 - 1) \mathbf{j} + C_3 \mathbf{k}$. It is given, though, that $\mathbf{r}(0) = \mathbf{i}$.

So we have
$$\mathbf{r}(0) = \mathbf{i} = C_1 \mathbf{i} + (C_2 - 1) \mathbf{j} + C_3 \mathbf{k}$$
.

Comparing coefficients and solving for the C's, we get $C_1 = 1, C_2 = 1, C_3 = 0$.

So after plugging in for the C's in the equation for $\mathbf{r}(t)$ we get $\mathbf{r}(t) = (-t\cos t + \sin t + 1)\mathbf{i} + (te^t - e^t + 1)\mathbf{j} + t\mathbf{k}$ as the required equation.