2/18/2011
Instructions:

PLEASE PROVIDE STEP BY STEP EXPLANATIONS

ANSWERS WITHOUT EXPLANATION WILL ONLY GET 40 percent
Time Limit 30 minutes ; Total 50 points
Please read the questions carefully before answering
It is recommended that you try those problems you are most comfortable with, first.
Attempt as many as you can; Anything over 50 is extra credit.

1. (10 points) Say whether each statement is true or false. In each case, explain why it is true/false or give counter-example. If true it is NOT enough to give just one example.
(a) The integral $\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t$ gives the change in position $\mathbf{r}(b)-\mathbf{r}(a)$ according to the fundamental theorem of calculus.
(b) The curvature κ of a line is m where $\mathbf{r}(s)=\mathbf{r}_{0}+s \mathbf{v}$ is the equation of the line with respect to the arc-length parameter s, and $\mathbf{v}=<m, m, m>$

Soln:

1a) FALSE. The integral $\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t$ actually gives $s(b)-s(a)$ according to the fundamental theorem, where $s(b)-s(a)$ is the arc length from a to b. To get the change in position vector you need to integrate $\mathbf{r}^{\prime}(t)$.
$1 \mathrm{~b})$ FALSE. The curvature of any line is 0 at all points.
2(a). (10 points) Find the arc length of the part of a curve given by $\mathbf{r}(t)=<e^{t}, e^{-t}, \sqrt{2} t>$ when $0 \leq t \leq 1$.
2(b). (10 points) Find the unit normal and tangent vectors $\mathbf{N}(0)$ and $\mathbf{T}(0)$ to the curve of part (a).
[Hint: May help to simplify $\left(e^{t}\right)^{2}+\left(e^{-t}\right)^{2}+2$ by writing it as a square]. Soln:
2a) The arc length is given by

$$
\begin{aligned}
& \int_{0}^{1} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t=\int_{0}^{1} \sqrt{\left(e^{t}\right)^{2}+\left(-e^{-t}\right)^{2}+(\sqrt{2})^{2}} d t \\
= & \int_{0}^{1} \sqrt{\left(e^{t}\right)^{2}+\left(e^{-t}\right)^{2}+2} d t=\int_{0}^{1} \sqrt{\left(e^{t}+e^{-t}\right)^{2}} d t=\int_{0}^{1}\left(e^{t}+e^{-t}\right) d t
\end{aligned}
$$

$$
=\left[e^{t}-e^{-t}\right]_{0}^{1}=[e-1]-\left[\frac{1}{e}-1\right]=e-(1 / e)=2.35
$$

2b)We have $\mathbf{r}^{\prime}(t)=<e^{t},-e^{-t}, \sqrt{2}>.\left\|\mathbf{r}^{\prime}(t)\right\|$ was found in part (a) to equal $e^{t}+e^{-t}$. Now we know that $T(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}$. So all we need to do is to plug in $t=0$ in this formula, using $\mathbf{r}^{\prime}(t)$ and $\left\|\mathbf{r}^{\prime}(t)\right\|$ as found above.

$$
T(0)=\frac{\mathbf{r}^{\prime}(0)}{\left\|\mathbf{r}^{\prime}(0)\right\|}=\frac{<e^{0},-e^{0}, \sqrt{2}>}{e^{0}+e^{0}}=<\frac{1}{2},-\frac{1}{2}, \frac{\sqrt{2}}{2}>
$$

Similarly, to find $\mathbf{N}(0)$ we use the formula $\frac{\mathbf{T}^{\prime}(0)}{\left\|\mathbf{T}^{\prime}(0)\right\|}$.
We have, using $\mathbf{r}^{\prime}(t)$ and $\left\|\mathbf{r}^{\prime}(t)\right\|$ as found above,

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=<\frac{e^{t}}{e^{t}+e^{-t}},-\frac{e^{-t}}{e^{t}+e^{-t}}, \frac{\sqrt{2}}{e^{t}+e^{-t}}>
$$

Now we have to find $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}$ and then plug in 0 .
First we find (using quotient rule frequently)

$$
\mathbf{T}^{\prime}(t)=<\frac{2}{\left(e^{t}+e^{-t}\right)^{2}},-\frac{e^{-2 t}}{\left(e^{t}+e^{-t}\right)^{2}}, \frac{-\sqrt{2}\left(e^{t}-e^{-t}\right)}{\left(e^{t}+e^{-t}\right)^{2}}>
$$

Now $\mathbf{N}(0)=\frac{\mathbf{T}^{\prime}(0)}{\left\|\mathbf{T}^{\prime}(0)\right\|}$.
Plugging in 0 for t in the $\mathbf{T}^{\prime}(t)$ we get
$\mathbf{T}^{\prime}(0)=<\frac{1}{2},-\frac{1}{4}, 0>$ and its magnitude is $\sqrt{\frac{1}{4}+\frac{1}{16}}=\sqrt{5} / 4$.
So $\mathbf{N}(0)=<\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}, 0>$
[Remember to first differentiate and then plug in $t=0$. Also, note how $\mathbf{T}(t)$ is a unit vector but $\mathbf{T}^{\prime}(t)$ isn't].
3a. (6 points) In two dimensions, write the equation of the circle of radius 2 with center at $(0,0)$ in parametric vector form. i.e, give an equation for $\mathbf{r}(t)$, the position vector of a point on the circle.
3b. (8 points) Find the arc length parametrization of the circle in 3a. 3c.(8 points) Using 3 b , find the curvature for any value of s.

Soln:
3 (a): The parametric vector equation is $\mathbf{r}(t)=2 \operatorname{cost} \mathbf{i}+2 \sin t \mathbf{j}$ where t is measured in radians and t is usually chosen to be in $[0,2 \pi]$.
$3(\mathrm{~b})$: The arc length from 0 to t is $s(t)=\int_{0}^{t} \sqrt{x^{\prime}(u)^{2}+y^{\prime}(u)^{2}} d u=2 t$.
So $t=s / 2$ and the arc length parametrization is :

$$
\mathbf{r}(s)=2 \cos (s / 2) \mathbf{i}+2 \sin (s / 2) \mathbf{j}
$$

$3(\mathrm{c})$: The curvature

$$
\kappa=\left\|\mathbf{r}^{\prime \prime}(s)\right\|=\|-2(1 / 4) \cos (s / 2) \mathbf{i}-2(1 / 4) \sin (s / 2) \mathbf{j}\|=1 / 2 .
$$

Notice that curvature is reciprocal of the radius.
4. (Challenge, 15 points) Find the parametric vector equation (i.e, equation for $\mathbf{r}(t)$) of the curve whose tangent vector satisfies
$\mathbf{r}^{\prime}(t)=t \sin t \mathbf{i}+t e^{t} \mathbf{j}+\mathbf{k}$ and which curve also satisfies $\mathbf{r}(0)=\mathbf{i}$.
Soln:
Let $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$.
$\mathbf{r}^{\prime}(t)=t \sin t \mathbf{i}+t e^{t} \mathbf{j}+\mathbf{k}$ means

$$
x^{\prime}(t)=t \sin t, y^{\prime}(t)=t e^{t}, z^{\prime}(t)=1
$$

Integrating, we get [Integrating by parts for first two equations]
$x(t)=\int t \sin t d t=-t \cos t+\sin t+C_{1}, y(t)=t e^{t}-e^{t}+C_{2}, z(t)=t+C_{3}$.
Letting $t=0$ we get

$$
x(0)=C_{1}, y(0)=-1+C_{2}, z(0)=C_{3} .
$$

Writing this in vector form we get $\mathbf{r}(0)=C_{1} \mathbf{i}+\left(C_{2}-1\right) \mathbf{j}+C_{3} \mathbf{k}$.
It is given, though, that $\mathbf{r}(0)=\mathbf{i}$.
So we have $\mathbf{r}(0)=\mathbf{i}=C_{1} \mathbf{i}+\left(C_{2}-1\right) \mathbf{j}+C_{3} \mathbf{k}$.
Comparing coefficients and solving for the C's, we get $C_{1}=1, C_{2}=$ 1, $C_{3}=0$.

So after plugging in for the C's in the equation for $\mathbf{r}(t)$ we get $\mathbf{r}(t)=(-t \cos t+\sin t+1) \mathbf{i}+\left(t e^{t}-e^{t}+1\right) \mathbf{j}+t \mathbf{k}$ as the required equation.

