Instructions:

PLEASE PROVIDE STEP BY STEP EXPLANATIONS

ANSWERS WITHOUT EXPLANATION WILL ONLY GET 40 percent
Time Limit 30 minutes ; Total 50 points
Please read the questions carefully before answering
It is recommended that you try those problems you are most comfortable with, first.
Attempt as many as you can; Anything over 50 is extra credit.

1. (10 points) Say whether each statement is true or false. In each case, explain why it is true/false or give counter-example. If true it is NOT enough to give just one example.
(a) In cylindrical co-ordinates, the equation of the sphere of radius 1 , center at $(0,0,0)$ is $r=1$.
(b)The parametric equation $x=t, y=0, z=0$ represents the vector valued function $\mathbf{r}(t)=t \mathbf{i}$ and its graph is a plane.

Soln:
1a) FALSE. The equation $r=1$ in cylindrical co-ordinates actually represents a cylinder of radius 1 and extending infinitely in both directions parallel to the z-axis, because there is no restriction on θ and ϕ. The equation for a sphere in cylindrical co-ordinates is $r^{2}+z^{2}=1$. You get this by putting $r^{2}=x^{2}+y^{2}$ in $x^{2}+y^{2}+z^{2}=1$.

1b) FALSE. A vector valued function of one variable t will always have a curve for its graph. The graph of this equation in particular is simply the x-axis, since it passes through $(0,0,0)$ and is parallel to the i vector.
2(a). (10 points) Write the equation $z=x^{2}+y^{2}$ in cylindrical coordinates.
2(b). (10 points) Identify and graph this surface.
Soln:
2a) This is the equation of a (circular) paraboloid. Putting $x=$ $r \cos \theta, y=r \sin \theta$ we get $z=r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r^{2}$. So the equation in cylindrical co-ordinates is $z=r^{2}$.

2b) First note that the graph of this is only in the upper half of 3 -space, above the $x y$-plane, because r^{2} is always positive and thus z co-ordinate has to be positive for all points on the surface. Secondly, given any point (x, y, z) we get that all the points with the same z coordinate lie on the circle with radius r given by $r^{2}=z$, or $r=\sqrt{z}$. So if you take cross-sections of this surface parallel to $x y$-plane at various values of z you get circles of radius \sqrt{z}. That is why it is a circular paraboloid. Finally, if you take cross sections vertically, say along $x z$-plane or $y z$-plane, we get parabolas: if $x=0$ you get $z=y^{2}$ and if $y=0$ you get $z=x^{2}$. So the vertical cross-sections are parabolas. The surface is obtained by rotating a parabola $z=x^{2}$ or $z=y^{2}$ about the z-axis.
3a. (10 points) Write the vector equation of the curve of intersection of the surfaces $z=x^{2}+y^{2}$ and $x-y=0$ in terms of a parameter t.
3b. (10 points) Find the equation for the tangent line to the curve of intersection in part (a) at (1,1,2).

Soln: (a):
Plugging in $x=y$ in the equation of the first surface, we get $z=2 x^{2}$ which is a parabola.

Letting $x=t$ we get $x=t, y=t, z=2 t^{2}$ as the parametric equation of the curve.

The vector equation is $\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+t^{2} \mathbf{k}$.
The tangent vector at $(1,1,2)$ is $\mathbf{r}^{\prime}(1)$ because $t=1$ at $(1,1,2)$.
Now $\mathbf{r}^{\prime}(t)=\mathbf{i}+\mathbf{j}+4 t \mathbf{k}$.
So $\mathbf{r}^{\prime}(1)=\mathbf{i}+\mathbf{j}+4 \mathbf{k}$.
The tangent line at $(1,1,2)$ is therefore given by
$\mathbf{r}(t)=<1,1,2>+t<1,1,4>$.
4. (Challenge, 15 points) A bug is traveling along a circular helix $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ with t represnting time. At what points is it going straight up? If the velocity vector at time t is given by $\mathbf{r}^{\prime}(t)$ find the point at which its speed is maximum.

Soln:

Velocity is given by $-\sin t \mathbf{i}+\cos \mathbf{t} \mathbf{j}+\mathbf{k}$.
Its direction at a given time is given by its tangent vector which is also same as the velocity vector $-\sin t \mathbf{i}+\cos t \mathbf{j}+\mathbf{k}$.

If it is going straight up then tangent vector must be parallel to \mathbf{k}. This will happen only if $x=0$ and $y=0$ in the tangent vector.
That means $-\operatorname{sint}=0$ and cost $=0$. But sine and cosine are never simultaneously zero. So this would never happen.

Speed is given by the magnitude of velocity which is $\sqrt{\cos ^{2} t+\sin ^{2} t+1^{2}}=$ $\sqrt{2}$. So its speed is always constant at $\sqrt{2}$ units.

NOTE: We haven't yet discussed a way to find the maximum of a vector. It makes sense only to look at the maximum of the magnitude of the vector.

