1/28/2011 Springl 2011, Calculus III Quiz 2 Sitaraman
Instructions:
PLEASE PROVIDE STEP BY STEP EXPLANATIONS
ANSWERS WITHOUT EXPLANATION WILL ONLY GET 40 percent
Time Limit 30 minutes ; Total 50 points
Please read the questions carefully before answering
It is recommended that you try those problems you are most comfortable with, first.
Attempt as many as you can; Anything over 50 is extra credit.

1. (10 points) Say whether each statement is true or false. In each case, explain why it is true/false or give counterexample. If true it is NOT enough to give just one example.
(a) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}$.
(b) The points $P=(1,1,4), Q=(2,2,-8)$ and $R=(3,3,12)$ lie on the same line.

Soln:
1a) FALSE. Actually $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=-(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}$
First note that $\mathbf{b} \times \mathbf{c}=-\mathbf{c} \times \mathbf{b}$.
So $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=-\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b})$.
But it is easy to see that $\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b})=(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}$ by switching rows twice in the determinant for $\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b})$.
[Or you can see that $\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b})=\mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})$ because the order of the vectors is the same in both; But because dot product is commutative, $\mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})=(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}]$.

Putting everything together we get that $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=-(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}$.
1b)FALSE. The vector $\overrightarrow{P Q}=(2,2,-8)-(1,1,4)=(1,1,-12)$ can be easily to be not along the same line as $\overrightarrow{Q R}=(1,1,20)$ because one is not a scalar multiple of another.

Another way to do this is to show that $\overrightarrow{P Q} \times \overrightarrow{Q R}$ is not zero.
2(a). (12 points) Find the area of the parallelogram that has the vectors $(1,2,0)$ and $(-1,0,2)$ as its adjacent sides.

2(b). (8 points) Find two unit vectors each perpendicular to both of the vectors in part (a).

Soln:
2a) The area of the parallelogram is given by the magnitude of the cross product of the two vectors.

The cross product of the two vectors is given by the determinant

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right|=\left|\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right| \mathbf{k}=4 \mathbf{i}-2 \mathbf{j}+(-2) \mathbf{k}
$$

The magnitude of the cross product is
$\|4 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k}\|=\sqrt{4^{2}+(-2)^{2}+(-2)^{2}}=\sqrt{24}=2 \sqrt{6}$.
$2 \mathrm{~b})$ The cross product of $(1,2,0)$ and $(-1,0,2)$, namely $4 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$, is perpendicular to both $(1,2,0)$ and $(-1,0,2)$. So to get two unit vectors perpendicular to both of them it is enough to get two unit vectors in the direction of $4 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$. This can be done by dividing by its magnitude which is $2 \sqrt{6}$. So one unit vector is $\frac{4 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k}}{2 \sqrt{6}}$ and the other is the negative of this, namely $-\frac{4 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k}}{2 \sqrt{6}}$.

So the desired vectors are $\frac{4}{2 \sqrt{6}} \mathbf{i}-\frac{2}{2 \sqrt{6}} \mathbf{j}-\frac{2}{2 \sqrt{6}} \mathbf{k}=\frac{2}{\sqrt{6}} \mathbf{i}-\frac{1}{\sqrt{6}} \mathbf{j}-\frac{1}{\sqrt{6}} \mathbf{k}$ and $-\left(\frac{2}{\sqrt{6}} \mathbf{i}-\frac{1}{\sqrt{6}} \mathbf{j}-\frac{1}{\sqrt{6}} \mathbf{k}\right)$.
3. (12 points) Three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are in the same plane if and only if their scalar triple product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$ is zero. Show that the vectors $(1,3,5),(3,5,7)$ and $(5,7,9)$ are in the same plane. (8 points) Write a parametric equation for the line through the point $(1,1,1)$ along the vector (1,3,5).

Soln: The scalar triple product is given by the determinant

$$
\left|\begin{array}{lll}
1 & 3 & 5 \\
3 & 5 & 7 \\
5 & 7 & 9
\end{array}\right|
$$

Expanding along the first row, the determinant equals 1(45-49)-$3(27-35)+5(21-25)=-4+24-20=0$.

So the three vectors are in the same plane.

The parametric equation for the line through the point $(1,1,1)$ along the vector $(1,3,5)$ is given by $\mathbf{r}=(x, y, z)=(1,1,1)+t(1,3,5)$ which gives $x=1+t, y=1+3 t, z=1+5 t$.
4. (Challenge, 15 points) Let A, B, C be three non-collinear points. Describe the set of points P in 3-space such that $\overrightarrow{A P} \cdot(\overrightarrow{A B} \times \overrightarrow{A C})=0$.

Soln:
Based on the fact that three vectors are in the same plane only if their scalar triple product is zero, we see that $\overrightarrow{A P} \cdot(\overrightarrow{A B} \times \overrightarrow{A C})=0$ is same as saying that the vectors $\overrightarrow{A P}, \overrightarrow{A B}, \overrightarrow{A C}$ are in the same plane. This means that the points A, B, C, P must all be in the same plane. Since any three points can be made to lie in the same plane, the set of such P is simply the plane containing A, B and C. [Since they are non-collinear, there is only one plane passing through them].

