Instructions:

PLEASE PROVIDE STEP BY STEP EXPLANATIONS

Time Limit 120 minutes ; Total 200 points
Please read the questions carefully before answering
It is recommended that you try those problems you are most comfortable with, first.

ANSWER ANY 10; EACH 20 POINTS

1. For the points $\mathrm{A}(1,0,1), \mathrm{B}(0,2,3), \mathrm{C}(2,1,0)$ find the area of the triangle ABC using cross-product of vectors.

Soln: This is problem 15 on page 839 . Solve it by taking the magnitude of $\overrightarrow{A B} \times \overrightarrow{A C}$. You should get $\sqrt{26} / 2$.
2.Confirm that s is an arc-length parametrization by checking that $\left\|\frac{d \mathbf{r}}{d s}\right\|=1$ and then use it to find the curvature $\kappa(s)$ of the curve:

$$
\mathbf{r}(s)=\sin \left(1+\frac{s}{2}\right) \mathbf{i}+\cos \left(1+\frac{s}{2}\right) \mathbf{j}+\sqrt{3}\left(1+\frac{s}{2}\right) \mathbf{k}
$$

Soln:
12.5-17

Answer: $\kappa=\left|\mathbf{r}^{\prime \prime}(s)\right|=1 / 4$.
3. Find the directional derivative of $f(x, y)=4 x^{3} y^{2}$ at $(2,1)$ in the direction of the vector $\mathbf{a}=4 \mathbf{i}-3 \mathbf{j}$.

Soln: 13.6-9
Dividing $4 \mathbf{i}-3 \mathbf{j}$ by its magnitude $=5$ we get a unit vector in the same direction: $\mathbf{u}=\frac{4}{5} \mathbf{i}-\frac{3}{5} \mathbf{j}$.
The directional derivative $D_{\mathbf{u}} f(2,1)=\nabla f \cdot \mathbf{u}$.
Answer is 0 .
4. Find the equation for the tangent plane and the parametric equations for the normal line to the surface $z=x e^{-y}$ at the point $(1,0,1)$.

Soln : 13.7-7
The tangent plane is given by using the normal vector which is obtained using the gradient at the given point. Normal line is also got by using normal vector.

Answer: $x-y-z=0$ and $x=1+t, y=-t, z=1-t$.
5. Find absolute maximum and minimum of the following:
$f(x, y)=x y-x-3 y$ on the triangle with vertices $(0,0),(0,4)$ and $(5,0)$.
Soln: 13.8-31
First find the critical points:
$f_{x}=0$ and $f_{y}=0$ gives $x=3, y=1$. At this point $f(3,1)=3-3-3=-3$. This point is inside the given triangle.

On the line joining $(5,0)$ and $(0,4)$ given by $4 x+5 y=20$ we have $f(x, y)=x\left(4-\frac{4}{5} x\right)-x-3\left(4-\frac{4}{5} x\right)$. This is a function of x only. On simplifying and setting $f^{\prime}(x)=0$ we get $x=27 / 8, y=13 / 10$. Plugging this back into f we get $f=-2.9$ approximately.

On the boundary triangle when $x=0$ you get $f=-3 y$. This single variable function of y has no critical points. Similarly on the other lines of the triangle $y=0$ there are no critical points.

The only points left to consider are the "boundaries of the boundaries"-the endpoints of the three sides of the triangle, namely $(0,0),(0,4)$ and $(5,0)$.

At these points $f=0,-12$ and -5 respectively.
Among all the values of f discussed so far, namely $-3,-2.9,0,-12$ and -5 we have absolute max $=0$ and absolute $\min =-12$.
6. Use an appropriate form of the chain rule to find $\frac{d w}{d t}$ given that $w=5 x^{2} y^{3} z^{4}, x=t^{2}, y=t^{3}, z=t^{5}$.

Soln: 13.5-7

Use formula (6) on page 950. Answer $165 t^{32}$.
7. Identify the surface $z=1-x^{2}-y^{2}$. Identify all critical points and find the local maxima and minima. Then find the absolute maxima and minima by inspecting the graph of the surface.

Soln:13.8-1b

The curve is a paraboloid facing down with vertex at $(0,0,1)$.
$z_{x}=-2 x=0, z_{y}=-2 y=0$ gives $x=0, y=0$. So $(0,0)$ is the lone critical point. The hessian $D=z_{x x} z_{y y}-z_{x y}^{2}$ is 0 , so we cannot conclude if this is a maximum or minimum. But from the graph it is easy to see that $(0,0,1)$ is the absolute maximum.
8. Evaluate the double integral $\iint 4 x y^{3} d A$ over the region R in the $x y$-plane described by the inequalities $-1 \leq x \leq 1,-2 \leq y \leq 2$.

Soln: 14.1-13

$$
\int_{-1}^{1} d x \int_{-2}^{2} 4 x y^{3} d y=0
$$

9. Use a double integral in polar coordinates to find the area enclosed by the cardioid $r=1-\cos \theta$.

Soln: 14.3-7

$$
\text { Area }=\int_{0}^{2 \pi} \int_{0}^{1-\cos \theta}(r d r) d \theta=3 \pi / 2
$$

Use $\cos ^{2} \theta=(1+\cos 2 \theta) / 2$ to integrate $\cos ^{2} \theta$.
10. Find the volume of the solid in the first octant bounded by the three coordinate planes and the plane $3 x+6 y+4 z=12$.

Soln: 14.5-15
This can be done using a double or a triple integral. In both cases start by looking at the region in the $x y$-plane under the surface. Here it will be $3 x+6 y=12$ by setting $z=0$. This line intersects the axes at $x=4$ and $y=2$. So you can start by letting x go from 0 to 4 or y go from 0 to 2 . In the first case for each x the y will go from 0 to $(12-3 x) / 6=2-\frac{x}{2}$.

If it is triple integral z will go from 0 to $z=(12-3 x-6 y) / 4$ and the integrand will be $d z d y d x$.
If it is double integral the integrand will be $(12-3 x-6 y) / 4 d y d x$.
11. Compute the divergence, curl and the divergence curl of the vector field

$$
\mathbf{F}(x, y, z)=7 y^{3} z^{2} \mathbf{i}-8 x^{2} z^{5} \mathbf{j}-3 x y^{4} \mathbf{k}
$$

Soln: 15.1-19 Answer: divergence is 0 , divergence curl is always 0 . curl is obtained using the crossproduct like determinant. curl is $\left(40 x^{2} z^{4}-12 x y^{3}\right) \mathbf{i}+\left(14 y^{3} z+3 y^{4}\right) \mathbf{j}+\left(16 x z^{5}+21 y^{2} z^{2}\right) \mathbf{k}$.
12. State Green's theorem. Evaluate the line integral $\oint y^{2} d x+x^{2} d y$ where C is the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$ by using Green's theorem.

Soln: 15.4-1

$$
\oint y^{2} d x+x^{2} d y=\iint\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A=\iint(2 x-2 y) d A=0
$$

