
9/27/2018 Fall 2018,Proofs and Problem Solving I Sitaraman
Howard University Math Department

Midterm test review problems

Problems are mostly from “Discrete Mathematics” by Johnsonbaugh and Raji’s Intro-
duction to Number Theory ebook (linked on update page).

1. Use proof by contrapositive to show that for all real numbers x, if x2 is irrational, then
x is irrational. Is the converse true? Prove or give a counterexample.

Solution: Contrapositive of A→ B is NOT B → NOT A.

So contrapositive here is : If x is rational, then x2 is rational.

This we can prove directly:

If x = k/m ∈ Q then x2 = k2/m2 ∈ Q.

Converse is false:
√

2 is irrational but (
√

2)2 = 2 is rational.

2. Show that the integer Qn = n! + 1, where n is a positive integer, has a prime divisor
greater than n. Conclude that there are infinitely many primes. Notice that this
exercise is another proof of the infinitude of primes.

Solution: Suppose there are no prime divisors of Qn that are bigger than n. Now it is
also true that thre are no the prime divisors of Qn smaller than or equal to n. This
is because if p is smaller than n then p divides n! since n! is just the product of all
natural numbers smaller than n. Therefore Qn has no divisors ≤ n or > n. This means
it has no prime divisors. Now if Qn has any divisors other than 1, then that divisor can
be broken up into prime factors eventually and so this means that Qn has no divisors
other than 1 at all (including itself!). That means Qn itself is 1. But clearly it is bigger
than 1 !

3. Show that there are no prime triplets other than 3,5,7.

Solution: Let p, p + 2, p + 4 be three numbers that form a triplet of the same form as
3,5,7, with p > 3.

We will prove that 3 divides one of them, which would mean one of them is not a
prime. Therefore there cannot be a prime triplet. The proof will be by cases.

Case 1: If 3 divides p then we are done.

Case 2: Assuming 3 does not divide p, we have two possibilities:

EIther 3 divides p+1 or 3 divides p+2. (Among any three consecutive natural numbers,
one will be a multiple of 3).

If 3 divides p+ 2 we are done because then p+ 2 is not a prime. If not, then 3 divides
p+1 and therefore we can say p+1 = 3m. Then p+4 = p+1+3 = 3m+3 = 3(m+1)
and so 3 divides p + 4 we are done.
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4. Show that if 2n − 1 is prime, then n is prime.

Hint: Use the identity akl − 1 = (ak − 1)(ak(l−1) + ak(l−2) + ... + ak + 1).

Solution: You don’t really need the full identity. All we need is that the RHS is a
product of two numbers both bigger than 1 if k > 1.

Proof by contradiction: Assume n is not a prime, and let n = km with both k and m
bigger than 1. Then using the identity we get 2n− 1 = 2km− 1 = (2k − 1)M where M
is an integer bigger than 1, equal to 1 + 2k + 22k + ... + 2k(m−1). On the other hand if
k > 1 we have 2k > 2 and hence 2k − 1 > 1. Thus 2n − 1 is a product of two numbers
both bigger than 1 and it is not a prime, contradicting the assumption.

5. Recall that we proved that gcd of two numbers m,n is the smallest positive integer d
such that d = xm+yn for some integers x, y. Find the gcd of 2 and 13 using Euclidean
algorithm. Show that gcd of m,n divides any number of the form xm + yn. Either
find all solutions or prove that there are no solutions for the diophantine equation
2x + 13y = 31. (i.e, x, y that satisfy the equation cannot be integers).

In one of the homework problems we showed that gcd of m,n divides any number of
the form xm + yn.

So the trick here is to write the gcd in the form 2x + 13y and then if 31 is a multiple
of the gcd we can get the solutions by multiplying both sides by suitable factor.

To write gcd in this form we use Euclidean algorithm.

In this case it takes only one step.

13 = 6(2) + 1 =⇒ 13− 6(2) = 1 =⇒ 2x + 13y = 1, with x = −6, y = 1.

So we get a solution of 2x + 13y = 31 by multiplying both sides by 31.

The solutions are −6× 31 = −186 = x, 1× 31 = 31 = y.

Check: (−186)2 + (31)(13) = −372 + 403 = 31.

Note that we can only do this because 31 is a multiple of 1.

If it were not there would be no solutions to 2x + 13y = 31 in integers because, as
we said at the top, 31 has to be divisible by gcd of 2 and 13 because gcd divides any
number of form 2x + 13y.

Now are there other solutions?

In fact, if there were one there would be infinitely many.

Now in the graph of 2x+ 13y = 31 if (x′, y′) is another point with integer coordinates,
then x′ − x, y′ − y are also integers but y′ − y = m(x′ − x) means that y′ − y =
(−2/13)(x′−x) is an integer which basically means x′−x is a multiple of 13. In other
words, x′ − x = 13k and y′ − y = (−2/13)(13k) = −2k.

So for any integer k, if we add (13k,−2k) to (−186, 31) that would be a solution.
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Check: k = 2 =⇒ (x′, y′) = (−186, 31) + (13(2),−2(2)) =⇒ x′ = −160, y′ = 27 and
(−160)2 + (27)(13) = −320 + 351 = 31.

6. A grocer orders apples and bananas at a total cost of $8.4. If the apples cost 25 cents
each and the bananas 5 cents each, how many of each type of fruit did he order.

Solution: This can be done just like the previous problem using the equation 25x+5y =
840. First you need to check that gcd of 25 and 5 divides 840.

7. Show, by giving a proof by contradiction, that if four teams play seven games, some
pair of teams plays at least two times.

Solution: Let the four teams be A,B,C,D. Proof by contradiction: Assume each pair
plays only once. Then A would play with B,C,D accounting for 3 games, B would play
with C and D accounting for two, and then C and D would play one game, for a total
of six games. Since they play seven games, we get a contradiction. Thus some pair
must play two games.

This is another application of the Pigeonhole principle.

Note that you can also get 6 = 4C2 =

(
4

2

)
= (4× 3)/2 using the formula for number

of ways to select sets of two things from four (combinations).

8. Use proof by cases to prove that |xy| = |x||y| for all real numbers x and y.

Solution: There are four cases: x ≥ 0, y ≥ 0; x < 0, y < 0; x ≥ 0, y < 0; x < 0, y ≥ 0.
Show that in each case the identity holds. For example, if x ≥ 0, y < 0 then |x| =
x, |y| = −y and |xy| = −xy and |xy| = |x||y|.

9. Prove that 2m2 + 4n2 − 1 = 2(m + n) has no solution in positive integers.

Solution: Can prove it with a combination of direct proof and proof by cases.

First, write this equation as a quadratic equation in the variable n, treating m as a
fixed number for the moment. Using quadratic formula,

4n2 − 2n + (2m2 − 2m− 1) = 0 =⇒ n =
−(−2)−

√
(−2)2 − 4(4)(2m2 − 2m− 1)

2(4)

=⇒ (8n− 4)2 = 4− 16(2m2 − 2m− 1) =⇒ 4− 16(2m2 − 2m− 1) ≥ 0.

[The RHS has to be ≥ 0 because LHS is a square].

Now we prove that 4− 16(2m2− 2m− 1) ≥ 0 is not always true, using proof by cases.
In fact, we could also use the fact that it needs to be a perfect square of a natural
number, but we would use that only for m = 1.

If m = 1 then 2m2 − 2m− 1 = −1 and 4− 16(−1) = 20 is not a perfect square.

If m ≥ 2, then clearly 2m2 − 2m− 1 > 1 and 4− 16(2m2 − 2m− 1) < 0. (If you want,
graph the parabola y = 2m2 − 2m− 1 to convince yourself).

So in all cases, the equation has no solution in natural numbers.
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10. Fill in the details of the following proof that there exist irrational numbers a and b
such that ab is rational:

Proof Let x = y =
√

2. If xy is rational, the proof is complete. (Explain.) Otherwise,
suppose that xy is irrational. (Why?) Let a = xy and b =

√
2. Consider ab. (How does

this complete the proof?) Is this proof constructive or nonconstructive?

Solution: This is a constructive proof.

Note that, in this proof we are only required to produce an example.

In general, it is not enough to give just one example.

The proof is easy to complete as shown, you only have to note that(
(
√

2)
√
2
)√2

= (
√

2)
√
2×
√
2 =
√

2
2

= 2.

11. Use formula for geometric sum a + ar + ar2 + ... + arn = a(rn − 1)/(r − 1) to show

that 1 + r + ... + rn <
1

1− r
for all n ≥ 0 and 0 < r < 1.

(This shows that even the infinite sum 1 + r + r2 + .... would have a finite sum).

Solution: using the formula, 1 + r + ... + rn = 1(1 − rn)/(1 − r) < 1/(1 − r) because
when 0 < r < 1, we have 0 < rn < 1 and thus 1− rn < 1.

12. Prove using mathematical induction that n < 3n for all positive integers n.

Solution: When n = 1, we have 1 < 31 = 3.

Want to show that n + 1 < 3n+1 starting from n < 3n.

Now n < 3n =⇒ n + 1 < 3n + 1 but 3n + 1 < 3n+1 = 3(3n) for all n ≥ 1 (Prove!).

13. Use mathematical induction to prove that

n∑
j=1

(−1)j−1j2 = (−1)n−1
n(n + 1)

2
.

Solution: For n = 1 we get (−1)1−1(12) = (−1)1−1(1(1 + 1)/2) =⇒ 1 = 1 so it is true.

Assuming that it is true for n we get

1− 22 + 33 − .... + (−1)n−1n2 = (−1)n−1
n(n + 1)

2
. (1)

Now we need to use this to prove for n + 1 :

1− 22 + 33 − .... + (−1)n−1n2 + (−1)n(n + 1)2 = (−1)n
(n + 1)(n + 2)

2
. (2)

But we see that the statement for n is contained in the LHS.
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Plugging in 1− 22 + 33 − .... + (−1)n−1n2 = (−1)n−1
n(n + 1)

2
from (1) into (2) in the

LHS we get

(−1)n−1
n(n + 1)

2
+(−1)n(n+1)2 = (−1)n−1(n+1)

[n
2

+ (−1)(n + 1)
]

= (−1)n−1(n+1)

[
−n + 2

2

]

= (−1)n−1(−1)
(n + 1)(n + 2)

2
= RHS of (2).

Since we showed that the LHS equals the RHS we are done.

14. Use mathematical induction to prove that 2n < n! for n ≥ 4.

Solution: We proved this in class.

First note that this is not true for n = 1, 2, 3. (Check!)

Now for n = 4 (which happens to be the first step here) it is true: 24 = 16 < 4! = 24.

Now we need to prove 2n+1 < (n+ 1)! assuming 2n < n!. In other words, starting with
2n < n!.

Now, multiplying both sides by 2, we get 2n × 2 < n!× 2 =⇒ 2n+1 < 2n!.

From this we get 2n+1 < (n + 1)! because 2n! < (n + 1)n! = (n + 1)!.

You can also start with 2n+1 < (n + 1)! and show it is true by reducing it to 2n < n!

15. Use mathematical induction to prove that n2 < n! for n ≥ 4.

Solution: Proof is similar to 12. For n = 4 we have 42 = 16 < 4! = 24.

Assuming n2 < n! true for n we need to prove that (n + 1)2 < (n + 1)!.

n2 < n! =⇒ n2+2n+1 < n!+2n+1 =⇒ (n+1)2 < n!+2n+1 =⇒ (n+1)2 < n!+3n

=⇒ (n + 12 < n! + (n!)n = n!(n + 1) = (n + 1)! = RHS.

Please prove by yourself that each step works. For instance, if n ≥ 4, you can show
that 2n + 1 < 3n and 3n < (n!)n.

16. Prove by induction that the number of subsets of a set X with N elements is 2n. The
set of all subsets is called the power sets, and is denoted as P (X). So this can be
written as |P (x)| = 2n. Note that the empty set and the set X itself are subsets of X.

Solution:

If the set has only one element, i.e, n = 1, then there are two subsets: the empty set
and itself. So |P (X)| = 21 = 2.

(Actually we need to start with empty set. In this case there is only one subset, and
|P (X)| = 20 = 1).

Suppose it is true for n.
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If X has n + 1 elements, fix the n + 1−th element, say x and divide P (X) into two
kinds of subsets: All the subsets not containing x are basically the subsets of a set of
n elements, namely the first n. So there are 2n such subsets, based on the assumption
for n. All subsets containing x can be obtained by adding x to one of the subsets in
the previous collection, and each one in the previous collection gives rise to exactly one
subset in this new collection. In other words, they are in one to one correspndence and
hence there are 2n subsets in the new collection also. But every subset either contains
x or doesn’t. So total number of subsets is obtained by adding number of subsets in
each collection. So P (X) = 2n + 2n = 2(2n) = 2n+1.

17. (Hard Problem) This problem shows that the sum of the harmonic sequence 1,

1/2,1/3,... namely 1 +
1

2
+

1

3
+ ... +

1

n
+ ... goes to infinity.

(Thus, unlike the geometric sequence mentioned above, even though the terms get
smaller and smaller, their sum goes to infinity).

Prove by induction that the sum of the first 2n terms of the harmonic sequence is at
least 1 + (n/2). That is,

H2n = 1 +
1

2
+

1

3
+ ... +

1

2n − 1
+

1

2n
≥ 1 +

n

2
.

I will leave this as a challenge problem for those interested.
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