
10/3/16 Fall 2016, Intro to Modern Algebra I Test I Solutions Sitaraman

EACH PROBLEM 20 POINTS

1. State clearly Lagrange’s Theorem and use it to prove that for any element in a group its order divides
the order of the group.

Solution: This is theorem 2.4.4 in Herstein.

2. Prove by induction on n that np − n is always divisible by p if p is a prime. Show that Fermat’s little
theorem follows from this.

You may need the Binomial Theorem to expand (n + 1)p :
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Solution: For n = 1 it is clearly true.
Assuming for n we need to prove for n + 1 : That (n + 1)p − (n + 1) is divisible by p.
On expansion using binomial theorem we get
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Now using
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=
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we have for any k = 1, 2, ...p− 1,
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k.k − 1....3.2.1
.

Clearly none of the numbers in the denominator divide p because they are all smaller than p. So that means

all of the coefficients

(
p

k

)
are divisible by p. Since by induction assumption np − n is divisible by p we see

that all of the RHS of the expression for (n + 1)p − (n + 1) is divisible by p. Therefore (n + 1)p − (n + 1) is
divisible by p.

Fermat’s last theorem follows from this because, if p does not divide then we can divide n out of np − n
(in other words n is invertible mod p and can be “canceled out”) and the quotient np−1 − 1 will also be
divisible by p. So np−1 ≡ 1 modulo p.

3. Give an example of a G and a subgroup H where [G : H] is infinite. Describe the cosets. [Hint: Think of a
group and an equivalence relation on it that results in an infinite number of equivalence classes. Alternately
think of an infinite group with a finite subgroup].

Solution: The easiest example is the subgroup {1,−1} in R∗ under multiplication where R∗ = R− {0}.
Its cosets are the sets of the form {r,−r} where r is any real number. So you get one coset for each positive
real number. These are the same as the equivalence classes for the relation a ∼ b if |a| = |b|. In fact, if
H = {1,−1} then this equivalence relation is the same as the one defined by the cosets of the subgroup,
namely a ∼ b ⇐⇒ Ha = Hb ⇐⇒ ab−1 ∈ H.

The above equivalence relation can also be generalized to C∗ and in that case H = {z ∈ C∗ | |z| = 1}.
The equivalence classes (hence the cosets) will be all the circles with center at the origin.

Another example, also discussed in class, is the finite subgroup of C∗ under multiplication given by
{x ∈ C∗ | xn = 1} for any natural number n. These are just the nthroots of unity. For example the fourth
roots of unity are 1,−1, i,−i. The cosets in this case are sets of the form {z,−z, iz,−iz} where z is a non-zero
complex number.

4. Describe all the subgroups of integers modulo 12 under addition (the remainders modulo 12). The

subgroups are the following: Subgroup of order 6 generated by 2 namely ({2,4,6,8,10,0}) ; Subgroup of order
4 generated by 3 ; Subgroup of order 3 generated by 4 ; Subgroup of order 2 generated by 6 ; The trivial
subgroups, namely { 0 } and the group itself.
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5. Given a subgroup H < G show that aHa−1 = {aha−1|h ∈ H} is also a subgroup for any fixed a ∈ G.

Solution: Need only to prove that if x, y ∈ aHa−1 then xy−1 ∈ aHa−1.
Let x = ah1a

−1, y = ah2a
−1, with h1, h2 ∈ H.

Then xy−1 = ah1a
−1

(
ah2a

−1
)−1

= ah1a
−1(a−1)−1h−1

2 a−1 = ah1a
−1ah−1

2 a−1 = a(h1h
−1
2 )a−1 ∈ aHa−1.
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