Fall 09, Precalculus (Honors) Quiz 8 Howard University Mathematics Math 007-9 Sitaraman 11/6/09

SOLUTIONS

1. Show that 2sin75cos15 = sin90 + sin60 = 1.866 without using the calculator.

Soln: This requires a product to sum formula. We know sin(A + B) + sin(A - B) = (sinAcosB + cosAsinB) + (sinAcosB - cosAsinB) and this reduces to 2sinAcosB. So writing sin90 = sin(75 + 15) and sin60 = sin(75 - 15) (i.e, A = 75, B = 15) we get 2sin75cos15 = sin90 + sin60 = 2.732.

2. Find the value of cos105 + cos15 (without calculator) by writing it as a product.

Soln:We know cos(A+B)+cos(A-B)=2cosAcosB. So we need to find out what A and B are, given that A+B=105 and A-B=15. Solving, we get A=60, B=45. So $cos105+cos15=2cos60cos45=2(\frac{1}{2})(\frac{\sqrt{2}}{2})=\sqrt{2}/2$.

3. Calculate $cos(2sin^{-1}\frac{3}{5})$ without using calculator.

Soln: Let $\alpha = sin^{-1}(\frac{3}{5})$. Then $sin\alpha = \frac{3}{5}$. Now $cos(2\alpha) = 1 - 2sin^2\alpha = 1 - 2(3/5)^2 = 1 - 2(9/25) = 7/25$.

4. Find θ such that $cos(2\theta) = 0$ and $0 \le \theta < 2\pi$.

Soln: First find the values in $[0,2\pi)$ for which cosine is zero and then get the others by adding multiples of 2π . The values (looking at the graph) for which cosine is zero inside $[0,2\pi)$ are 90 and 270. i.e, $\pi/2$ and $3\pi/2$. Adding multiples of 360 (i.e, 2π radians) to these, we get 450 and 630 $(5\pi/2, 7\pi/2)$. We stop with 630 because our values should be within 720. So $2\theta = 90,270,450,630$ and $\theta = 45,135,225,315$ or $\pi/4,3\pi/4,5\pi/4,7\pi/4$.

5. Find all possible values of θ such that $tan\theta = \sqrt{3}$.

Soln: $\tan \frac{\pi}{3} = \sqrt{3}$. Since $\tan \theta$ is periodic with period π , we get $\theta = \frac{\pi}{3} + n\pi$ where $n = \dots -3, -2, -1, 0, 1, 2, 3, \dots$

6. Find θ in $[0, 2\pi)$ such that $cos(2\theta) + cos(\theta) = 0$.

Soln:

Find θ in $[0, 2\pi)$ such that $cos(2\theta) + cos(\theta) = 0$.

First we convert the sum $cos(2\theta) + cos(\theta)$ to a product using the formula cos(A+B) + cos(A-B) = 2cosAcosB. Letting $A+B=2\theta$ and $A-B=\theta$ we get $A=\frac{3\theta}{2}$ and $B=\frac{\theta}{2}$. So we get $cos(2\theta)+cos(\theta)=2cos(\frac{3\theta}{2})cos(\frac{\theta}{2})=0$ which means $cos(\frac{3\theta}{2})=0$ or $cos(\frac{\theta}{2})=0$. First we look at $cos(\frac{3\theta}{2})=0$. Now θ in $[0,2\pi)$ means $3\theta/2$ is in $[0,3\pi]$ (Multiply both sides by 3/2]. In $[0,3\pi]$ we have $3\theta/2=\pi/2,3\pi/2,5\pi/2$ for which cosine is 0. This means for $\theta=\pi/3,\pi,5\pi/3$ in $[0,2\pi)$ are in the solution.

Now we look at $cos(\frac{\theta}{2}) = 0$. Using the same argument as above, we get the values of $\theta/2 = \pi/2$ as the only solution in $[0, \pi)$ and so $\theta = \pi$ is the only solution in $[0, 2\pi]$.

Putting them together we get the list of solutions as $\pi/3, 5\pi/3, \pi$.